Figure 1

Figure 2

Level of Complexity

Examples

Figure 3

Figure 4

Figure 5

Figure 6

	System Drivers	Stakeholders	Objectives	Functions	Objects	Activities
System Drivers	The list and interactions of exogenous factors that act or acted on by the system	Relates the stakeholders that act on exogenous variables	Relates the objectives that act on exogenous variables	Relates the functions that act on exogenous variables	Relates the technical components that act on exogenous variables	Relates the activities that act on exogenous variables
Stakeholders	Relates the exogenous variables that act on system stakeholders	The list and interactions of the human entities within the system	Relates the objectives that act on stakeholders	Relates the functions that act on stakeholders	Relates the technical components that act on stakeholders	Relates the activities that act on stakeholders
Objectives	Relates the exogenous variables that act on system objectives	Relates the stakeholders that define or contribute to the system objectives	The list and interactions of combined purposes and goals of the system	Relates the functions that act on or relate to system objectives	Relates the technical components that act on system objectives	Relates the activities that act on system objectives
Functions	Relates the exogenous variables that act on system functions	Relates the stakeholders that act on system functions	Relates the objectives that are decomposed into system functions	The list and interactions of functions of the system	Relates the technical components that are traceable to system functions	Relates the activities that act on system functions
Objects	Relates the exogenous variables that act on system technical components	Relates the stakeholders that act on the technical components of the system	Relates the objectives that act on or constrain technical components	Relates the functions that are allocated to technical components	The list and interactions of technical components of the system	Relates the activities that act on technical components
Activities	Relates the exogenous variables that act on the system activities	Relates the stakeholders that engage in or act on the activities of the system	Relates the objectives that act on or constrain system activities	Relates the functions that are allocated to system activities	Relates the technical components that act on system activities	The list and interactions of activities of the system

Figure 7

Figure 8

Figure 9

Rank	Objects Network Alone	
1	Engine Subsystem	372.797
2	Ground Station Transmitter	271.913
3	Control Subsystem	243.768
4	Ground Station Subsystem	211.846
5	Ground Station Software	197.242
6	Actuator \#1	153.585
7	Wing Subsystem	138.008
8	Battery Connectors	134.774
9	Ribs	127.143
10	Wing Composite Structure	102.837

Rank	MAV-PD	
1	Autopilot Subsystem	1977.195
2	Communication Subsystem (Datalink)	1822.32
3	Ground Station Subsystem	1749.317
4	Air Vehicle	1388.325
5	Wing Subsystem	1298.756
6	Battery Subsystem	1013.186
7	Fuselage Subsystem	1007.738
8	Ground Station Software	992.118
9	Control Subsystem	967.44
10	Fuselage Structure	967.42

Figure 10

Rank	MAV-PD Social Network	Betweeness	Rank	MAV-PD Entire Network	Betweeness
1	PMWJ	500.199	1	PMWJ	10972.993
2	STCC	199.471	2	KTRDM	3680.017
3	PMBI (MAV-PD PM 3)	84.154	3	KTRNM	1972.081
4	SPOMD	\bigcirc	4	STCC	1556.707
5	SPOKE	- 45.143	5	PMBI (MAV-PD PM 3)	1372.588
6	SPOGR	43.867	6	KTRRC	1004.062
7	KTRDM	40.153	7	KTRTT	618.312
8	STYA	21.676	8	KTRBR	390.463
9	STSP	20.47	9	SPOMD	293.354
10	PMFC	15.23	10	STYA	275.212

Figure 11

Figure 12

Figure 13

Minimize (- Endurance, Longest Linear Dimension)

Where:

1. Endurance $=\frac{L / D_{\max } \times e_{\text {engine }} \times e t a_{\text {prop }} \times e t a_{\text {motor }} \times V_{\text {trim }}}{9.81 \times m_{\text {MAVnoengine }}} \times 1000$
2. $S_{\text {LinDim }}=\sqrt{b_{\text {wing }}{ }^{2}+\left(\frac{S_{\text {wing }}}{b_{\text {wing }}}\right)^{2}} \quad$ Where: $S_{\text {wing }}=\frac{b_{\text {wing }}}{2} \times c_{r_{-} \text {wing }} \times\left(1+\frac{c_{t_{-} \text {wing }}}{c_{r_{-} \text {wing }}}\right)$

Figure 14

Figure 15

